Technical Support Information
Last update: 26 September 2006

 

Overlay 6

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 70 71 72 73 74 75 76 77 78 79 80 81 82

IOp(6/15)

SPECIFICATION OF ADDITIONAL CENTERS. IF MORE THAN ONE OF THESE IS REQUESTED, THE LISTS ARE IN SEPARATE INPUT SECTIONS IN THE ORDER LISTED BELOW.

0        NO ADDITIONAL CENTERS. EVALUATE THE PROPERTIES ONLY AT EACH ATOMIC CENTER.

1        READ ADDITIONAL CENTERS. ONE CARD PER CENTER WITH THE X, Y AND Z
          COORDINATES IN ANGSTROMS (FREE FORMAT).

2        READ IN COORDINATES AS FOR 1. STARTING AT EACH POINT, LOCATED THE
          NEAREST STATIONARY POINT IN THE ELECTRIC. POTENTIAL.

4        Read in a set of cards specifying a grid of points at which the electric potential will be computed.
          Two forms of specifications are allowed:

A. Evenly spaced rectangular grid.

Three cards are required:

KTape,XO,YO,ZO        -- output unit and coordinates of one corner of grid. If KTape is 0, it defaults to 51.

N1,X1,Y1,Z1                -- number of increments and vector.

N2,X2,Y2,Z2                -- number of increments and vector.

N1 records will be written to unit KTape, with N2 values in each record.

B. An arbitrary list of points.

Only one card is needed:

N,NEFG,LTape,KTape

The coordinates of N points in Angstroms will be read unit LTape in format (3F20.12). The potential (NEFG=3),

potential and field (NEFG=2), or potential, field, and field gradient (NEFG=1) will be computed and written along with the coordinates to unit KTape in format (4F20.12). Thus if NEFG=3 for each point there will be 4 cards written per point, containing:

X-coord,Y-coord,Z-coord,Potential

X-field,Y-field,Z-field,XX-EFG

YY-EFG,ZZ-EFG,XY-EFG,XZ-EFG

YZ-EFG

Note that either form of grid should be specified with respect to the standard orientation of the molecule.

8        Do potential-derived charges.

16      Constrain the dipole in fitting charges.

32      Read in centers at which to evaluate the potential from the rwf.

128    Read grid; do not default cube.

IOp(6/16)

Cutoffs in L602.

0        Use full accuracy in calculations at specific points, but use sleazy cutoffs in mapping a grid of points.

1        Do all points to full accuracy.

IOp(6/17)

DEBUGGING CONTROL (L602).

0        COMPUTE ALL CONTRIBUTIONS TO SELECTED PROPERTIES.

1        COMPUTE ONLY THE NUCLEAR CONTRIBUTION.

2        COMPUTE ONLY THE ELECTRONIC CONTRIBUTION.

-N     COMPUTE ONLY THE CONTRIBUTION OF SHELL N.

IOp(6/18)

Whether to update dipole rwf 0/1 yes/no.

IOp(6/19)

Whether to rotate exact polarizability before comparing with approximate (which will be calculated in the standard orientation). This is like IOp(9) in L9999.

0        Default, same as 1.

1        Exact is still in standard orientation; use as-is.

2        Exact is already in z-matrix orientation, so rotate.

IOp(6/20)

How to do electrostatic-potential derived charges:

0        Default (1).

-1      Read a list of points at which to fit, one per line.

1        Merz-Kollman point selection

2        CHELP point selection.

3        CHELPG point selection.

00      Default radii are those defined with the selected method.

10      Force Merz-Kollman radii.

20      Force CHELP (Francl) recommended radii.

30      Force CHELPG (Breneman) recommended radii.

100    Read in replacement radii for selected atom types as pairs (IAn,Rad) or (Symbol,Rad), terminated by a blank line.

200    Read in replacment radii for selected atoms as pairs (I,Rad), terminated by a blank line.

1000  Fit united atoms (heavy atoms only) rather than all atoms.

10000 Use only active atoms in the fit.

IOp(6/21)

Operation of L603:

0        Default (same as 2).

1        Read in density basis functions and compute populations.

2        Optimize density basis set.

IOp(6/22)

Selection of density matrix (currently only in L601, L602, L604):

-1x        Read density matrices from .chk file.

+1x        Read density matrices from .chk file.

-5          All available transition densities.

-4          Transition density between the states given by IOp(29) and IOp(30).

-3          Density for the excited state given by IOp(29).

-2          Use all available density matrices.

-1          Use the density matrix for the current method, or the HF density if the one for the current method is not available.

N.ge.0   Use the density matrix for method N (see Link 1 for the numbering scheme).

IOp(6/23)

Density values to evaluate over grid in L604:

0        Default (same as 3).

1        Density values.

2        Density values and gradients.

3        Density values, gradients and divergence.

IOp(6/24)

Frozen core:

-N      Freeze N orbitals.

0        Default (Yes).

1        Yes.

2        No.

IOp(6/25)

Whether to compute coulomb self-energy in L601:

0        No.

1        Yes, classically (including self terms - requires 2e integrals, O(N**4)).

2        Yes, quantum mechanically (no self terms - requires 2e integrals, and only available for HF. O(N**5)).

IOp(6/26)

Which density to use in L602 and L604:

0        Default (same as 1).

1        Total.

2        Alpha.

3        Beta.

4        Spin.

IOp(6/27)

Choice of population analysis:

0        Default (12).

1        Don't do Mulliken populations.

2        Do Mulliken populations.

10      Don't do bonding Mulliken Populations.

20      Do bonding Mulliken Populations.

100    Do Minimal population analysis.

IOp(6/28)

Mark SCF density as current density.

0        No: save SCF density, but do not mark.

1        Yes: mark as well.

IOp(6/29)

Excited state to use if requested by IOp(22).

IOp(6/30)

2nd excited state for transition density:

0        Transition denstiy between state IOp(29) and g.s.

N       Transition denstiy between state IOp(29) and state N.

IOp(6/31)

Whether to determine natural orbitals from densities:

0        No.

1        Yes, using total density.

2        Yes, using alpha and beta separately for UHF.

3        Store only alpha NOs.

4        Store only beta NOs.

5        Use spin density.

IOp(6/32)

CONTROL PARAMETERS FOR COVBON in L609 (NOT TO BE CHANGED UNDER MOST

CIRCUMSTANCES):

10000*MItLoc+1000*ITlLoc+100*IDcInt+IPrLoc, where

MItLoc      MItLoc*NOrb*(NOrb-1)/2 is the maximum number of iterations in
                  localization of (spin)orbitals (1...9, default 6),

ITlLoc       10.**(-ITlLoc) is the convergence criterion for (spin)orbital localization (1...9, default 9),

IDcInt        Localized (spin)orbitals with atomic occupancies less than 0.01*IDcInt are
                  interpreted as lone pair MOs rather than bond MOs (1...99, default 10),

IPrLoc       0: Print the atomic occupancies of localized (spin)orbitals (default),
                  1: Do not print the atomic occupancies.

L605, L606: naming of RPAC interface file.

0        Make this a scratch file.

1        Name this file 'rpac.11'

IOp(6/35)

WHAT TO DO:

0             Determine attractors, attractor interaction lines, ring points, and cage points.

1             Determine zero-flux surfaces (IDoZrF).

2             Compute charges of AIMs (IDoAtC).

4             Compute kinetic energies and multipole moments of AIMs (IDoPrp).

10           Compute energies of electrostatic interactions between AIMs (IDoPot). This precludes
               calculations of atomic property derivatives with respect to nuclear displacements.

100         Compute atomic overlap matrices (IDoAOM).

200         Compute other atomic matrix elements (IDoAMa).

400         Include zero-flux surface relaxation terms in all atomic matrix elements (IDoSRe)

1000       Compute derivatives of atomic properties with respect to electric field (IDoSeP).
               Note that IDoSRe should be set to 1 in order to obtain correct results! Also note
               that analytical polarizabilities have to be available but force constants have to be absent!

2000       Compute derivatives of atomic properties with respect to nuclear displacements as
               well (IDoNuD). Note that analytical force constants have to be available!

10000     Compute localized orbitals and bond orders (IDoLoc).

20000     Compute atomic orbitals in molecule (IDoAOs).

100000   If necessary, augment valence electron densities with relativistic core contributions,
               which is a default anyway (IHwAug=0).

200000   If necessary, augment valence electron densities with nonrelativistic core contributions (IHwAug=1).

400000   Abort if pseudopotentials have been used (IHwAug=3).

1000000  Reduce accuracy so atomic charges can be computed more rapidly (IQuick). No other
                properties can be calculated. This option sets IPrNDe=5, IPrNAt=5, and IEpsIn=100.

2000000  Use numerical instead of analtyic integration.

3000000  Use numerical instead of analtyic integration and use reduced cutoffs.

IOp(6/36)

CONTROL PARAMETERS FOR NEGLECT OF ORBITALS AND PRIMITIVES in L609:

10000*INoZer+100*IPrNDe+IPrNAt, where

INoZer        0: Ignore (spin)orbitals with zero occupancies (default), 1: Do not ignore (spin)orbitals with zero occupancies,

IPrNDe        Neglect primitive contributions below 10.**(-IPrNDe) in evaluations of electron
                    density and its derivatives (0    99, default 7),

IPrNAt        Neglect primitive contributions below 10.**(-IPrNAt) in integrations over atomic basins (099, default 7).

IOp(6/37)

CONTROL PARAMETERS FOR ATINLI, RNGPNT, AND CAGPNT in L609 (NOT TO BE CHANGED UNDER MOST CIRCUMSTANCES):

1000000*MxBpIt+100000*SBpMax+1000*NGrd+LookUp, where

MxBpIt        Maximum number of iterations in trial path determination (1...99, default 10),

SBpMax      Maximum value of the control sum (1...9, default 2),

NGrd           Length of Fourier expansion for the trial path (1...99, default 20),

LookUp       Number of grid points in critical point search (1...999, default 100).

IOp(6/38)

CONTROL PARAMETERS FOR ZRFLUX AND OIGAPI in L609 (NOT TO BE CHANGED UNDER MOST CIRCUMSTANCES):

100000*INStRK+10000*IHowFa+1000*IGueDi+100*IPraIn+10*IRScal+IRtFSe

INStRK       10*INStRK is the number of steps in the Runge-Kutta integrations along gradient paths (1...9, default 2),

IHowFa        IHowFa is the maximum distance in the Runge-Kutta integrations along gradient paths (1...9, default 5),

IGueDi         10.**(-IGueDi) is the initial displacement from the critical point in the Runge-Kutta
                     integrations (1...9, default 6),

IPraIn          10.*IPraIn is the cut-off for zero-flux surfaces (1...9, default 2),

IRScal          IRScal is the scaling factor in the nonlinear transformation used in the intersection search (1...9, default 2),

IRtFSe         10.*IRtFSe is the safety factor used in the intersection search (1...9, default 2).

IOp(6/39)

More CONTROL PARAMETERS FOR ZRFLUX AND OIGAPI in L609 (NOT TO BE CHANGED UNDER MOST CIRCUMSTANCES):

1000000*IToler+100000*INInGr+10000*INInCh+1000*IEpsSf+10*IEpsIn+INTrig

IToler          10.**(-5-IToler) is the tolerance for the intersection search (1...9, default 5),

INInGr        10*INInGr is the initial number of grid points in theta and phi in the adaptive integration
                    subroutine (1...9, default 2),

INInCh        5+INInCh is the initial number of sampling points in the intersection search (1...9, default 2),

IEpsSf          IEpsSf is the safety factor used for patches with surface faults in the adaptive integration
                    subroutine (1...9, default 6),

IEpsIn          0.0001*IEpsIn is the target for integration error (1...99, default 2),

INTrig          10*INTrig is the number of sine and cosine functions in the trial function for surface sheets (1...9, default 2).

IOp(6/40)

Control of link 607.

0        Default NBO analysis - don't read input.

1        Read input data to control NBO analysis.

2        Delete selected elements of NBO Fock matrix and form a new density, whose energy can
          then be computed by one of the SCF links. This link must have been invoked with IOp(40)
          = 0 or 1 prior to invoking it with IOp(40)=2.

3        Read the deletion energy produced by a previous run with IOp(40)=2 and print it.

IOp(6/41)

Number of layers in esp charge fit.

0         Default (4).

N        N layers, must be >=4.

IOp(6/42)

Density of points per unit area in esp fit.

0        Default (1).

N        points per unit area.

IOp(6/43)

Increment between layers in MK charge fit.

0        Default (0.4/Sqrt(#layers))

N        0.01*N.

IOp(6/44)

Type of calculation in L604:

0        Default, same as 2.

1        Compute the molar volume

2        Evaluate the density over a cube of points

3        Evaluate MO's over a cube of points

10      Skip header information in cube file.

IOp(6/45)

Number of points per bohr**3 for Monte-Carlo calaulation of molar volume

-1        Read from input

0         Default (20)

N        N points - for tight accuracy, 50 is recommended.

IOp(6/46)

Threshold for molecular volume integration.

0        Default - 10**-3

-1      Read from input.

N       N*10**-4.

IOp(6/47)

Scale factor to apply to van der Waals radii for the box size during volume integration:

0        Default.

N       N*0.01 - for debugging.

IOp(6/48)

Use of cutoffs

0        Default (10**-6 accuracy for cubes, 1 digit better than desired acuracy for volumes).

N       10**-N

IOp(6/49)

Approximate number of points per side in cube in l602/l604:

0        Default (80)

N       N points

-1      Read from cards.

-2      Coarse grid, 3 points/Bohr.

-3      Medium grid, 6 points/Bohr.

-4      Fine grid, 12 points/Bohr.

-N>4 Grid using 1000 / N points/Bohr.

IOp(6/51)

Whether to apply Extended Koopman's Theorem (EKT):

0         Default (No).

N        Yes, on non-SCF densities, up to N IPs and EAs.

-1        Yes, on non-SCF densities, all possible IPs and EAs.

-2        No.

IOp(6/52)

Number of radial integration points in L609:

0        Default (100).

N       N.

IOp(6/53)

Distribution of radial points in L609:

0        Default (cubic)

N       Polynomial of order N.

IOp(6/54)

Maximum number of domains.

0        Default (100000).

N       N.

IOp(6/55)

Number of inner angular points in numerical integration in L609:

-1       0 (no inner sphere)

0        302

N        N point Lebedev grid (see AngQad).

IOp(6/56)

Whether to read in density matrix from input stream in L608.

0        No.

1        Yes.

IOp(6/57)

Whether to generate data over a grid using the total SCF density:

0        No.

1        Yes, read in name for output file.

2        Yes, also read in name for input file with a different grid and compare.

3        Output in the form of data statements.

IOp(6/58)

Grid to use in generating tables of density and potential. Must be an unpruned grid.

0        Default (99001).

IOp(6/59)

Approximations to Exc

-1      Test superposition of atomic densities using L608:

0        Do correct energies.

1        Do correct energies and 0th order approximation

2        Do correct energies and 0th-1st order approximations

3        Do correct energies and 0th-2nd order approximations

IOp(6/60-62)        

Over-ride standard values of IRadAn, IRanWt, and IRanGd.

IOp(6/63)

Suppress number of electrons test in XC quadrature in L608 (for debugging with small grids):

0        Default (do test).

1        Suppress test.

2        Do test as usual.

IOp(6/64)

Natural Chemical Shielding Analysis:

0        No.

1        Yes, of isotropic value.

2        Yes, of diagonal tensor elements and isotropic value.

3        Yes, of all tensor components.

IOp(6/65)

Threshold for printing of NCS contributions.

-1       Zero.

0        Default (1 pmm).

N        N/1000 ppm

IOp(6/70)

Control of L610.

IOp(6/71)

XC functional in L610.

IOp(6/72)

Whether to read isotopes for hyperfine interractions and do hyperfine terms in L602:

0        Default (1).

1        Yes, if open-shell, NMR data is available, and other terms are being computed

2        No.

3        Yes, regardless of other terms.

4        Yes, reading isotopes

IOp(6/73)

Whether to save orbitals from NBO:

0        Default (No).

1        Save NBOs in place of regular MOs.

2        Save NLMOs in place of regular MOs.

3        Save NLMO occupieds and NBO virtuals.

10      Suppress re-orthogonalization.

IOp(6/74)

Whether to use Gaussian connectivity in choosing Lewis structure for NBO.

0        Default (use if present and choose is selected in NBO input).

1        Use.

2        Don't use.

IOp(6/75)

model for CM2 charges.

IOp(6/76)

Threshold for linear dependence in L607.

0        Default (1.D-6).

N       10**(-N).

IOp(6/77)

Restraint in charge fitting in L602:

0        None.

-1      2.d-4

N       N * 10^-5.

IOp(6/78)

Use MOs instead of density in AtmTab.

0        Default (2).

1        Use density.

2        Use MOs.

IOp(6/79)

Whether to calculate Hirshfeld charges.

0        Default (No).

1        Yes.

2        No.

IOp(6/80)

Whether to calculate Lowdin charges and Mayer bond orders.

0        Default (No).

1        Yes.

2        No.

IOp(6/81)

Print kinetic energy of orbitals?

0        Default (yes, if doing other orbital results).

1        Yes, for the top 5 occupieds and lowest 5 virtuals.

2        No.

3        Yes, for all orbitals.

IOp(6/82)

Tensors for hyperfine spectra.

0        Default, compute if there are 100 or fewer atoms

1        Compute QEq tensors and for open-shell systems compute isotropic and anisotropic splitting tensors.

2        Do not compute tensors.