Gaussian 03 Online ManualLast update: 2 July 2006 | |

## ADMPThis
keyword requests a classical trajectory calculation [177,178,179,180]
using the Atom Centered Density Matrix Propagation molecular dynamics model [188,189,190].
This method provides equivalent functionality to Born-Oppenheimer molecular dynamics
(see the ADMP belongs to
the extended Lagrangian approach to molecular dynamics using Gaussian basis function
and propagating the density matrix. The best known method of this type is Car-Parrinello
(CP) molecular dynamics [191], in which the Kohn-Sham
molecular orbitals, ψ ADMP can be performed with semi-empirical, HF, and pure and hybrid DFT models (see availability section below for more details). It can be applied to molecules, clusters and periodic systems. PBC calculations use only the Γ point (i.e., no K-integration). ## OPTIONAL INPUTAlthough
most jobs will not require it, [ First, the initial velocity
for each atom is read if the Morse parameter data may also be specified for each diatomic
product. The Morse parameter data is used to determine the vibrational excitation
of diatomic fragments using the EBK quantization rules. It consists of the atomic
symbols for the two atoms, the bond length between them (
Choleski, which uses the Cholesky basis and is the default.
N microHartrees. NuclearKineticEnergy
is a synonym for this option.
N microHartrees. DensityKineticEnergy is a synonym
for this option.
N/10000| amu (the default is N=1000, resulting in a fictitious
mass of 0.1 amu). EMass is a synonym for this option. If N<0,
then uniform scaling is used for all basis functions. By default, core functions
are weighted more heavily than valence functions.
You may also specify
alternative isotopes for Semi-empirical, HF and DFT methods. The The
following sample # B3LYP/6-31G(d) ADMP Geom=Crowd Dissociation of H2CO --> H2 + CO 0 1 C O 1 r1 H 1 r2 2 a H 1 r3 3 b 2 180. r1 1.15275608 r2 1.74415774 r3 1.09413376 a 114.81897892 b 49.08562961 At the beginning of an TRJ-TRJ-TRJ-TRJ-TRJ-TRJ-TRJ-TRJ-TRJ-TRJ-TRJ-TRJ-TRJ-TRJ-TRJ-TRJ-TRJ ------------------------------------------------------------------- INPUT DATA FOR L121 General parameters: Maximum Steps = 50 Random Number Generator Seed = 398465 Time Step = 0.10000 femptosec Ficticious electronic mass = 0.10000 amu MW individual basis funct. = True Initial nuclear kin. energy = 0.10000 hartree Initial electr. kin. energy = 0.00000 hartree Initial electr. KE scheme = 0 Multitime step - NDtrC = 1 Multitime step - NDtrP = 1 No Thermostats chosen to control nuclear temperature Integration parameters: Follow Rxn Path (DVV) = False Constraint Scheme = 12 Projection of angular mom. = True Rotate density with nuclei = True The molecular coordinates and velocities appear at the beginning of each trajectory step (some output digits are truncated here to save space): Cartesian coordinates: I= 1 X= -1.1971360D-01 Y= 0.0000000D+00 Z= -1.0478570D+00 I= 2 X= -1.1971360D-01 Y= 0.0000000D+00 Z= 1.1305362D+00 I= 3 X= 2.8718451D+00 Y= 0.0000000D+00 Z= -2.4313539D+00 I= 4 X= 4.5350603D-01 Y= 0.0000000D+00 Z= -3.0344227D+00 MW Cartesian velocity: I= 1 X= -4.0368385D+12 Y= 1.4729976D+13 Z= 1.4109897D+14 I= 2 X= 4.4547606D+13 Y= -6.3068948D+12 Z= -2.2951936D+14 I= 3 X= -3.0488505D+13 Y= 6.0922004D+12 Z= 1.8527270D+14 I= 4 X= -1.3305097D+14 Y= -3.1794401D+13 Z= 2.4220839D+14 TRJ-TRJ-TRJ-TRJ-TRJ-TRJ-TRJ-TRJ-TRJ-TRJ-TRJ-TRJ-TRJ-TRJ-TRJ After the trajectory computation is complete, summary information is displayed in the output for each time step in the trajectory: Trajectory summary for trajectory 1 Energy/gradient evaluations 51 Hessian evaluations 51 Trajectory summary Time (fs) Kinetic (au) Potent (au) Delta E (au) Delta A (h-bar) 0.000000 0.1000000 -113.0500312 0.0000000 0.0000000000000000 0.100000 0.0995307 -113.0495469 0.0000150 0.0000000000000003 0.200000 0.0983706 -113.0483488 0.0000531 0.0000000000000009 0.300000 0.0970481 -113.0469941 0.0000852 0.0000000000000021 ... You can also use |